The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis
نویسندگان
چکیده
Chlamydia trachomatis, an obligate intracellular pathogen, grows inside of a vacuole, termed the inclusion. Within the inclusion, the organisms differentiate from the infectious elementary body (EB) into the reticulate body (RB). The RB communicates with the host cell through the inclusion membrane to obtain the nutrients necessary to divide, thus expanding the chlamydial population. At late time points within the developmental cycle, the RBs respond to unknown molecular signals to redifferentiate into infectious EBs to perpetuate the infection cycle. One strategy for Chlamydia to obtain necessary nutrients and metabolites from the host is to intercept host vesicular trafficking pathways. In this study we demonstrate that a trans-Golgi soluble N-ethylmaleimide-sensitive factor attachment protein (SNARE), syntaxin 10, and/or syntaxin 10-associated Golgi elements colocalize with the chlamydial inclusion. We hypothesized that Chlamydia utilizes the molecular machinery of syntaxin 10 at the inclusion membrane to intercept specific vesicular trafficking pathways in order to create and maintain an optimal intra-inclusion environment. To test this hypothesis, we used siRNA knockdown of syntaxin 10 to examine the impact of the loss of syntaxin 10 on chlamydial growth and development. Our results demonstrate that loss of syntaxin 10 leads to defects in normal chlamydial maturation including: variable inclusion size with fewer chlamydial organisms per inclusion, fewer infectious progeny, and delayed or halted RB-EB differentiation. These defects in chlamydial development correlate with an overabundance of NBD-lipid retained by inclusions cultured in syntaxin 10 knockdown cells. Overall, loss of syntaxin 10 at the inclusion membrane negatively affects Chlamydia. Understanding host machinery involved in maintaining an optimal inclusion environment to support chlamydial growth and development is critical toward understanding the molecular signals involved in successful progression through the chlamydial developmental cycle.
منابع مشابه
The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane
Chlamydia trachomatis is an obligate intracellular pathogen that replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusion is isolated from the endocytic pathway but fusogenic with Golgi-derived exocytic vesicles containing sphingomyelin and cholesterol. Sphingolipids are incorporated into the chlamydial cell wall and are considered essential for chlamydial devel...
متن کاملCountercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack.
Genetic and biochemical evidence has established that a SNARE complex consisting of syntaxin 5 (Sed5)-mYkt6 (Ykt6)-GOS28 (Gos1)-GS15 (Sft1) is required for transport of proteins across the Golgi stack in animals (yeast). We have utilized quantitative immunogold labeling to establish the cis-trans distribution of the v-SNARE GS15 and the t-SNARE subunits GOS28 and syntaxin 5. Whereas the distrib...
متن کاملSyntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins.
Retrograde transport allows proteins and lipids to leave the endocytic pathway to reach other intracellular compartments, such as trans-Golgi network (TGN)/Golgi membranes, the endoplasmic reticulum and, in some instances, the cytosol. Here, we have used RNA interference against the SNARE proteins syntaxin 5 and syntaxin 16, combined with recently developed quantitative trafficking assays, morp...
متن کاملA syntaxin 10–SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the Golgi after delivering lysosomal enzymes to the endocytic pathway. This process requires Rab9 guanosine triphosphatase (GTPase) and the putative tether GCC185. We show in human cells that a soluble NSF attachment protein receptor (SNARE) complex comprised of syntaxin 10 (STX10), STX16, Vti1a, and VAMP3 is required for th...
متن کاملStructural basis for the interaction of the Golgi-Associated Retrograde Protein Complex with the t-SNARE Syntaxin 6.
The Golgi-Associated Retrograde Protein (GARP) complex is a tethering factor involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein, we report the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015